29 research outputs found

    On scattering of solitons for the Klein-Gordon equation coupled to a particle

    Full text link
    We establish the long time soliton asymptotics for the translation invariant nonlinear system consisting of the Klein-Gordon equation coupled to a charged relativistic particle. The coupled system has a six dimensional invariant manifold of the soliton solutions. We show that in the large time approximation any finite energy solution, with the initial state close to the solitary manifold, is a sum of a soliton and a dispersive wave which is a solution of the free Klein-Gordon equation. It is assumed that the charge density satisfies the Wiener condition which is a version of the ``Fermi Golden Rule''. The proof is based on an extension of the general strategy introduced by Soffer and Weinstein, Buslaev and Perelman, and others: symplectic projection in Hilbert space onto the solitary manifold, modulation equations for the parameters of the projection, and decay of the transversal component.Comment: 47 pages, 2 figure

    Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field

    Full text link
    The long-time asymptotics is analyzed for all finite energy solutions to a model U(1)-invariant nonlinear Klein-Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as time goes to plus or minus infinity to the set of all ``nonlinear eigenfunctions'' of the form \psi(x)e\sp{-i\omega t}. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation. We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time-spectrum in the spectral gap [-m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh Convolution Theorem reduces the spectrum of each omega-limit trajectory to a single harmonic in [-m,m]. The research is inspired by Bohr's postulate on quantum transitions and Schroedinger's identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled U(1)-invariant Maxwell-Schroedinger and Maxwell-Dirac equations.Comment: 29 pages, 1 figur

    Stable directions for small nonlinear Dirac standing waves

    Full text link
    We prove that for a Dirac operator with no resonance at thresholds nor eigenvalue at thresholds the propagator satisfies propagation and dispersive estimates. When this linear operator has only two simple eigenvalues close enough, we study an associated class of nonlinear Dirac equations which have stationary solutions. As an application of our decay estimates, we show that these solutions have stable directions which are tangent to the subspaces associated with the continuous spectrum of the Dirac operator. This result is the analogue, in the Dirac case, of a theorem by Tsai and Yau about the Schr\"{o}dinger equation. To our knowledge, the present work is the first mathematical study of the stability problem for a nonlinear Dirac equation.Comment: 62 page

    Periodic solutions for a class of nonlinear partial differential equations in higher dimension

    Full text link
    We prove the existence of periodic solutions in a class of nonlinear partial differential equations, including the nonlinear Schroedinger equation, the nonlinear wave equation, and the nonlinear beam equation, in higher dimension. Our result covers cases where the bifurcation equation is infinite-dimensional, such as the nonlinear Schroedinger equation with zero mass, for which solutions which at leading order are wave packets are shown to exist.Comment: 34 page

    Classical scattering with long range forces

    Full text link
    We discuss the classical two-body scattering problem for potentials which decrease at infinity like r −α , 1≧α>0. We prove existence and uniqueness theorems for scattering orbits parametrized by their asymptotic data. Wave operators are constructed and their properties discussed. We also discuss and prove cluster properties of the S -operator.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46509/1/220_2005_Article_BF01646193.pd

    Asymptotic stability of breathers in some Hamiltonian networks of weakly coupled oscillators

    Full text link
    We consider a Hamiltonian chain of weakly coupled anharmonic oscillators. It is well known that if the coupling is weak enough then the system admits families of periodic solutions exponentially localized in space (breathers). In this paper we prove asymptotic stability in energy space of such solutions. The proof is based on two steps: first we use canonical perturbation theory to put the system in a suitable normal form in a neighborhood of the breather, second we use dispersion in order to prove asymptotic stability. The main limitation of the result rests in the fact that the nonlinear part of the on site potential is required to have a zero of order 8 at the origin. From a technical point of view the theory differs from that developed for Hamiltonian PDEs due to the fact that the breather is not a relative equilibrium of the system

    A system of ODEs for a Perturbation of a Minimal Mass Soliton

    Full text link
    We study soliton solutions to a nonlinear Schrodinger equation with a saturated nonlinearity. Such nonlinearities are known to possess minimal mass soliton solutions. We consider a small perturbation of a minimal mass soliton, and identify a system of ODEs similar to those from Comech and Pelinovsky (2003), which model the behavior of the perturbation for short times. We then provide numerical evidence that under this system of ODEs there are two possible dynamical outcomes, which is in accord with the conclusions of Pelinovsky, Afanasjev, and Kivshar (1996). For initial data which supports a soliton structure, a generic initial perturbation oscillates around the stable family of solitons. For initial data which is expected to disperse, the finite dimensional dynamics follow the unstable portion of the soliton curve.Comment: Minor edit
    corecore